If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2/110-(21/110)(x)+1=0
Domain of the equation: 110)x!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
x^2/110-(+21/110)x+1=0
We multiply parentheses
x^2/110-21x^2+1=0
We multiply all the terms by the denominator
x^2-21x^2*110+1*110=0
We add all the numbers together, and all the variables
x^2-21x^2*110+110=0
Wy multiply elements
x^2-2310x^2+110=0
We add all the numbers together, and all the variables
-2309x^2+110=0
a = -2309; b = 0; c = +110;
Δ = b2-4ac
Δ = 02-4·(-2309)·110
Δ = 1015960
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1015960}=\sqrt{4*253990}=\sqrt{4}*\sqrt{253990}=2\sqrt{253990}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{253990}}{2*-2309}=\frac{0-2\sqrt{253990}}{-4618} =-\frac{2\sqrt{253990}}{-4618} =-\frac{\sqrt{253990}}{-2309} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{253990}}{2*-2309}=\frac{0+2\sqrt{253990}}{-4618} =\frac{2\sqrt{253990}}{-4618} =\frac{\sqrt{253990}}{-2309} $
| ((x^2)/(110))-((21)/((110)(x))+1=0 | | -11x-7=-8x-4x-21 | | 3=4t+1 | | ((x^2)/(110))-((21)/(110x))+1=0 | | 0.08(x-100)=38.5-0.007x | | 32^-2x=8 | | (3+2i)+(7-5i)=0 | | -0.10x^2-5x+840=0 | | −2=x4+1 | | 2x+40)=(3x-85 | | x(x+3)=2(12) | | 161/2+3x=37.5 | | 133/4-1/4x=11.25 | | Y=0.25x-487.75 | | ƒ(x)=x2–8x+22 | | 40z+2760=100z | | 50=5t+5 | | 57.99+0.11x=58.32 | | 20y^2-5y-4.2=0 | | 14=3s+2 | | 1n+2n+(2n+5)=50 | | 4w^2-4w-48=0 | | 27=p+2p | | 20y^2-43y-84=0 | | 2x^2-6=18 | | 3m-(7m+12)=2(m-3 | | 17=q+14 | | 5x5=-25 | | 21=2t+7 | | -6×+8x=-46 | | 6x-4+2x=7x+5 | | -7(v+1)=7v+35 |